Untrusted NOMA with Imperfect SIC: Outage Performance Analysis and Optimization
Non-orthogonal multiple access (NOMA) has come to the fore as a spectral-efficient technique for fifth-generation and beyond communication networks. We consider the downlink of a NOMA system with untrusted users. In order to consider a more realistic scenario, imperfect successive interference cancellation is assumed at the receivers during the decoding process. Since pair outage probability (POP) ensures a minimum rate guarantee to each user, it behaves as a measure of the quality of service for the pair of users. With the objective of designing a reliable communication protocol, we derive the closed-form expression of POP. Further, we find the optimal power allocation that minimizes the POP. Lastly, numerical results have been presented which validate the exactness of the analysis, and reveal the effect of various key parameters on achieved pair outage performance. In addition, we benchmark optimal power allocation against equal and fixed power allocations with respect to POP. The results indicate that optimal power allocation results in improved communication reliability.
READ FULL TEXT