Using Image Priors to Improve Scene Understanding
Semantic segmentation algorithms that can robustly segment objects across multiple camera viewpoints are crucial for assuring navigation and safety in emerging applications such as autonomous driving. Existing algorithms treat each image in isolation, but autonomous vehicles often revisit the same locations or maintain information from the immediate past. We propose a simple yet effective method for leveraging these image priors to improve semantic segmentation of images from sequential driving datasets. We examine several methods to fuse these temporal scene priors, and introduce a prior fusion network that is able to learn how to transfer this information. The prior fusion model improves the accuracy over the non-prior baseline from 69.1 73.3 to models such as FCN-8, our prior method achieves the same accuracy with 5 times fewer parameters. We used a simple encoder decoder backbone, but this general prior fusion method could be applied to more complex semantic segmentation backbones. We also discuss how structured representations of scenes in the form of a scene graph could be leveraged as priors to further improve scene understanding.
READ FULL TEXT