Vehicle Trajectory Prediction in City-scale Road Networks using a Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention Mechanisms

06/21/2021
by   Yuebing Liang, et al.
0

Trajectory prediction of vehicles at the city scale is of great importance to various location-based applications such as vehicle navigation, traffic management, and location-based recommendations. Existing methods typically represent a trajectory as a sequence of grid cells, road segments or intention sets. None of them is ideal, as the cell-based representation ignores the road network structures and the other two are less efficient in analyzing city-scale road networks. In addition, most models focus on predicting the immediate next position, and are difficult to generalize for longer sequences. To address these problems, we propose a novel sequence-to-sequence model named D-LSTM (Direction-based Long Short-Term Memory), which represents each trajectory as a sequence of intersections and associated movement directions, and then feeds them into a LSTM encoder-decoder network for future trajectory generation. Furthermore, we introduce a spatial attention mechanism to capture dynamic spatial dependencies in road networks, and a temporal attention mechanism with a sliding context window to capture both short- and long-term temporal dependencies in trajectory data. Extensive experiments based on two real-world large-scale taxi trajectory datasets show that D-LSTM outperforms the existing state-of-the-art methods for vehicle trajectory prediction, validating the effectiveness of the proposed trajectory representation method and spatiotemporal attention mechanisms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset