Visual Recognition by Request

07/28/2022
by   Chufeng Tang, et al.
0

In this paper, we present a novel protocol of annotation and evaluation for visual recognition. Different from traditional settings, the protocol does not require the labeler/algorithm to annotate/recognize all targets (objects, parts, etc.) at once, but instead raises a number of recognition instructions and the algorithm recognizes targets by request. This mechanism brings two beneficial properties to reduce the burden of annotation, namely, (i) variable granularity: different scenarios can have different levels of annotation, in particular, object parts can be labeled only in large and clear instances, (ii) being open-domain: new concepts can be added to the database in minimal costs. To deal with the proposed setting, we maintain a knowledge base and design a query-based visual recognition framework that constructs queries on-the-fly based on the requests. We evaluate the recognition system on two mixed-annotated datasets, CPP and ADE20K, and demonstrate its promising ability of learning from partially labeled data as well as adapting to new concepts with only text labels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset