Walling up Backdoors in Intrusion Detection Systems

09/17/2019
by   Maximilian Bachl, et al.
0

Interest in poisoning attacks and backdoors recently resurfaced for Deep Learning (DL) applications. Several successful defense mechanisms have been recently proposed for Convolutional Neural Networks (CNNs), for example in the context of autonomous driving. We show that visualization approaches can aid in identifying a backdoor independent of the used classifier. Surprisingly, we find that common defense mechanisms fail utterly to remove backdoors in DL for Intrusion Detection Systems (IDSs). Finally, we devise pruning-based approaches to remove backdoors for Decision Trees (DTs) and Random Forests (RFs) and demonstrate their effectiveness for two different network security datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset