Weakly Supervised Training of Speaker Identification Models

06/22/2018
by   Martin Karu, et al.
0

We propose an approach for training speaker identification models in a weakly supervised manner. We concentrate on the setting where the training data consists of a set of audio recordings and the speaker annotation is provided only at the recording level. The method uses speaker diarization to find unique speakers in each recording, and i-vectors to project the speech of each speaker to a fixed-dimensional vector. A neural network is then trained to map i-vectors to speakers, using a special objective function that allows to optimize the model using recording-level speaker labels. We report experiments on two different real-world datasets. On the VoxCeleb dataset, the method provides 94.6 the baseline performance by a large margin. On an Estonian broadcast news dataset, the method provides 66 93

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro