Web-Scale Generic Object Detection at Microsoft Bing

07/05/2021
by   Stephen Xi Chen, et al.
0

In this paper, we present Generic Object Detection (GenOD), one of the largest object detection systems deployed to a web-scale general visual search engine that can detect over 900 categories for all Microsoft Bing Visual Search queries in near real-time. It acts as a fundamental visual query understanding service that provides object-centric information and shows gains in multiple production scenarios, improving upon domain-specific models. We discuss the challenges of collecting data, training, deploying and updating such a large-scale object detection model with multiple dependencies. We discuss a data collection pipeline that reduces per-bounding box labeling cost by 81.5 and latency by 61.2 can improve weighted average precision by over 20 domain-specific models. We also improve the model update agility by nearly 2 times with the proposed disjoint detector training compared to joint fine-tuning. Finally we demonstrate how GenOD benefits visual search applications by significantly improving object-level search relevance by 54.9 and user engagement by 59.9

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro