WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern Approaches for Mass Data Mining

06/09/2023
by   Ravindrakumar Purohit, et al.
0

Weighted Outlier Detection is a method for identifying unusual or anomalous data points in a dataset, which can be caused by various factors like human error, fraud, or equipment malfunctions. Detecting outliers can reveal vital information about system faults, fraudulent activities, and patterns in the data, assisting experts in addressing the root causes of these anomalies. However,creating a model of normal data patterns to identify outliers can be challenging due to the nature of input data, labeled data availability, and specific requirements of the problem. This article proposed the WePaMaDM-Outlier Detection with distinct mass data mining domain, demonstrating that such techniques are domain-dependent and usually developed for specific problem formulations. Nevertheless, similar domains can adapt solutions with modifications. This work also investigates the significance of data modeling in outlier detection techniques in surveillance, fault detection, and trend analysis, also referred to as novelty detection, a semisupervised task where the algorithm learns to recognize abnormality while being taught the normal class.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset