Why is Compiling Lifted Inference into a Low-Level Language so Effective?

06/14/2016
by   Seyed Mehran Kazemi, et al.
0

First-order knowledge compilation techniques have proven efficient for lifted inference. They compile a relational probability model into a target circuit on which many inference queries can be answered efficiently. Early methods used data structures as their target circuit. In our KR-2016 paper, we showed that compiling to a low-level program instead of a data structure offers orders of magnitude speedup, resulting in the state-of-the-art lifted inference technique. In this paper, we conduct experiments to address two questions regarding our KR-2016 results: 1- does the speedup come from more efficient compilation or more efficient reasoning with the target circuit?, and 2- why are low-level programs more efficient target circuits than data structures?

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro