Wireless Energy Transfer in RIS-Aided Cell-Free Massive MIMO Systems: Opportunities and Challenges

01/27/2022
by   Enyu Shi, et al.
0

In future sixth-generation (6G) mobile networks, the Internet-of-Everything (IoE) is expected to provide extremely massive connectivity for small battery-powered devices. Indeed, massive devices with limited energy storage capacity impose persistent energy demand hindering the lifetime of communication networks. As a remedy, wireless energy transfer (WET) is a key technology to address these critical energy supply issues. On the other hand, cell-free (CF) massive multiple-input multiple-output (MIMO) systems offer an efficient network architecture to realize the roll-out of the IoE. In this article, we first propose the paradigm of reconfigurable intelligent surface (RIS)-aided CF massive MIMO systems for WET, including its potential application scenarios and system architecture. The four-stage transmission procedure is discussed and analyzed to illustrate the practicality of the architecture. Then we put forward and analyze the hardware design of RIS. Particularly, we discuss the three corresponding operating modes and the amalgamation of WET technology and RIS-aided CF massive MIMO. Representative simulation results are given to confirm the superior performance achieved by our proposed schemes. Also, we investigate the optimal location of deploying multiple RISs to achieve the best system performance. Finally, several important research directions of RIS-aided CF massive MIMO systems with WET are presented to inspire further potential investigation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset