Zig-zag sampling for discrete structures and non-reversible phylogenetic MCMC

04/19/2020
by   Jere Koskela, et al.
0

We construct a zig-zag process targeting posterior distributions arising in genetics from the Kingman coalescent and several popular models of mutation. We show that the zig-zag process can lead to efficiency gains of up to several orders of magnitude over classical Metropolis-Hastings, and argue that it is also well suited to parallel computation for coalescent models. Our construction is based on embedding discrete variables into continuous space; a technique previously exploited in the construction of Hamiltonian Monte Carlo algorithms, where it can lead to implementationally and analytically complex boundary crossings. We demonstrate that the continuous-time zig-zag process can largely avoid these complications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro