1×N Block Pattern for Network Sparsity
Though network sparsity emerges as a promising direction to overcome the drastically increasing size of neural networks, it remains an open problem to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose one novel concept of 1× N block sparsity pattern (block pruning) to break this limitation. In particular, consecutive N output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our 1 × N sparsity pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements, and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our 1 × N block sparsity can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs-based platforms. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, in the case of 50 obtains about 3.0 MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Code is available at https://github.com/lmbxmu/1xN.
READ FULL TEXT