3D convolutional neural network for abdominal aortic aneurysm segmentation

03/03/2019
by   Karen López-Linares, et al.
0

An abdominal aortic aneurysm (AAA) is a focal dilation of the aorta that, if not treated, tends to grow and may rupture. A significant unmet need in the assessment of AAA disease, for the diagnosis, prognosis and follow-up, is the determination of rupture risk, which is currently based on the manual measurement of the aneurysm diameter in a selected Computed Tomography Angiography (CTA) scan. However, there is a lack of standardization determining the degree and rate of disease progression, due to the lack of robust, automated aneurysm segmentation tools that allow quantitatively analyzing the AAA. In this work, we aim at proposing the first 3D convolutional neural network for the segmentation of aneurysms both from preoperative and postoperative CTA scans. We extensively validate its performance in terms of diameter measurements, to test its applicability in the clinical practice, as well as regarding the relative volume difference, and Dice and Jaccard scores. The proposed method yields a mean diameter measurement error of 3.3 mm, a relative volume difference of 8.58 77 considered relevant, thus, our method is suitable to automatically determine the AAA diameter and opens up the opportunity for more complex aneurysm analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset