5G Traffic Prediction with Time Series Analysis
In todays day and age, a mobile phone has become a basic requirement needed for anyone to thrive. With the cellular traffic demand increasing so dramatically, it is now necessary to accurately predict the user traffic in cellular networks, so as to improve the performance in terms of resource allocation and utilisation. By leveraging the power of machine learning and identifying its usefulness in the field of cellular networks we try to achieve three main objectives classification of the application generating the traffic, prediction of packet arrival intensity and burst occurrence. The design of the prediction and classification system is done using Long Short Term Memory model. The LSTM predictor developed in this experiment would return the number of uplink packets and also estimate the probability of burst occurrence in the specified future time interval. For the purpose of classification, the regression layer in our LSTM prediction model is replaced by a softmax classifier which is used to classify the application generating the cellular traffic into one of the four applications including surfing, video calling, voice calling, and video streaming.
READ FULL TEXT