A Blockage Model for the Open Area Mm-wave Device-to-Device Environment
A significant portion of the 5th generation of wireless networks will operate in the mm-wave bands. One of the several challenges associated with mm-wave propagation is to overcome shadowing due to signal blockage caused by environmental objects. Particularly susceptible are nodes in a device-to-device network that typically operate at low power and in a blockage prone environment such as crowded open areas. In this work, we provide an insight into the effect of blockages on the signal quality for an open area device-to-device scenario. We propose a blockage model based on the homogeneous Poisson Point Process. The model provides the average signal attenuation as a soft metric that quantifies the extent of blockage. This not only indicates whether the signal is blocked but also measures how much the signal is attenuated due to one or more blockers. The analytical results are confirmed with the help of Monte Carlo simulations for real-world blocker placement in the environment.
READ FULL TEXT