A (Co)Algebraic Framework for Ordered Processes

09/01/2022
by   Todd Schmid, et al.
0

A recently published paper (Schmid, Rozowski, Silva, and Rot, 2022) offers a (co)algebraic framework for studying processes with algebraic branching structures and recursion operators. The framework captures Milner's algebra of regular behaviours (Milner, 1984) but fails to give an honest account of a closely related calculus of probabilistic processes (Stark and Smolka, 1999). We capture Stark and Smolka's calculus by giving an alternative framework, aimed at studying a family of ordered process calculi with inequationally specified branching structures and recursion operators. We observe that a recent probabilistic extension of guarded Kleene algebra with tests (Rozowski, Kozen, Kappe, Schmid, Silva, 2022) is a fragment of one of our calculi, along with other examples. We also compare the intrinsic order in our process calculi with the notion of similarity in coalgebra.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset