A Contrastive Cross-Channel Data Augmentation Framework for Aspect-based Sentiment Analysis

04/16/2022
by   Bing Wang, et al.
0

Aspect-Based Sentiment Analysis is a fine-grained sentiment analysis task, which focuses on detecting the sentiment polarity towards the aspect in a sentence. However, it is always sensitive to the multi-aspect challenge, where features of multiple aspects in a sentence will affect each other. To mitigate this issue, we design a novel training framework, called Contrastive Cross-Channel Data Augmentation (C3DA). A source sentence will be fed a domain-specific generator to obtain some synthetic sentences and is concatenated with these generated sentences to conduct supervised training and proposed contrastive training. To be specific, considering the limited ABSA labeled data, we also introduce some parameter-efficient approaches to complete sentences generation. This novel generation method consists of an Aspect Augmentation Channel (AAC) to generate aspect-specific sentences and a Polarity Augmentation (PAC) to generate polarity-inverted sentences. According to our extensive experiments, our C3DA framework can outperform those baselines without any augmentations by about 1% on accuracy and Macro-F1.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset