A Factor Graph Approach to Joint OFDM Channel Estimation and Decoding in Impulsive Noise Environments

06/07/2013
by   Marcel Nassar, et al.
0

We propose a novel receiver for orthogonal frequency division multiplexing (OFDM) transmissions in impulsive noise environments. Impulsive noise arises in many modern wireless and wireline communication systems, such as Wi-Fi and powerline communications, due to uncoordinated interference that is much stronger than thermal noise. We first show that the bit-error-rate optimal receiver jointly estimates the propagation channel coefficients, the noise impulses, the finite-alphabet symbols, and the unknown bits. We then propose a near-optimal yet computationally tractable approach to this joint estimation problem using loopy belief propagation. In particular, we merge the recently proposed "generalized approximate message passing" (GAMP) algorithm with the forward-backward algorithm and soft-input soft-output decoding using a "turbo" approach. Numerical results indicate that the proposed receiver drastically outperforms existing receivers under impulsive noise and comes within 1 dB of the matched-filter bound. Meanwhile, with N tones, the proposed factor-graph-based receiver has only O(N log N) complexity, and it can be parallelized.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro