A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix
In this paper we explore orthogonal systems in L_2(R) which give rise to a skew-Hermitian, tridiagonal differentiation matrix. Surprisingly, allowing the differentiation matrix to be complex leads to a particular family of rational orthogonal functions with favourable properties: they form an orthonormal basis for L_2(R), have a simple explicit formulae as rational functions, can be manipulated easily and the expansion coefficients are equal to classical Fourier coefficients of a modified function, hence can be calculated rapidly. We show that this family of functions is essentially the only orthonormal basis possessing a differentiation matrix of the above form and whose coefficients are equal to classical Fourier coefficients of a modified function though a monotone, differentiable change of variables. Examples of other orthogonal bases with skew-Hermitian, tridiagonal differentiation matrices are discussed as well.
READ FULL TEXT