A Framework for the Evaluation of Network Reliability Under Periodic Demand

01/13/2023
by   Ali Maatouk, et al.
0

In this paper, we study network reliability in relation to a periodic time-dependent utility function that reflects the system's functional performance. When an anomaly occurs, the system incurs a loss of utility that depends on the anomaly's timing and duration. We analyze the long-term average utility loss by considering exponential anomalies' inter-arrival times and general distributions of maintenance duration. We show that the expected utility loss converges in probability to a simple form. We then extend our convergence results to more general distributions of anomalies' inter-arrival times and to particular families of non-periodic utility functions. To validate our results, we use data gathered from a cellular network consisting of 660 base stations and serving over 20k users. We demonstrate the quasi-periodic nature of users' traffic and the exponential distribution of the anomalies' inter-arrival times, allowing us to apply our results and provide reliability scores for the network. We also discuss the convergence speed of the long-term average utility loss, the interplay between the different network's parameters, and the impact of non-stationarity on our convergence results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro