A frequency domain analysis of the error distribution from noisy high-frequency data

01/20/2018
by   Jinyuan Chang, et al.
0

Data observed at high sampling frequency are typically assumed to be an additive composite of a relatively slow-varying continuous-time component, a latent stochastic process or a smooth random function, and measurement error. Supposing that the latent component is an Itô diffusion process, we propose to estimate the measurement error density function by applying a deconvolution technique with appropriate localization. Our estimator, which does not require equally-spaced observed times, is consistent and minimax rate optimal. We also investigate estimators of the moments of the error distribution and their properties, propose a frequency domain estimator for the integrated volatility of the underlying stochastic process, and show that it achieves the optimal convergence rate. Simulations and a real data analysis validate our analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset