A GAMP Based Low Complexity Sparse Bayesian Learning Algorithm

03/08/2017
by   Maher Al-Shoukairi, et al.
0

In this paper, we present an algorithm for the sparse signal recovery problem that incorporates damped Gaussian generalized approximate message passing (GGAMP) into Expectation-Maximization (EM)-based sparse Bayesian learning (SBL). In particular, GGAMP is used to implement the E-step in SBL in place of matrix inversion, leveraging the fact that GGAMP is guaranteed to converge with appropriate damping. The resulting GGAMP-SBL algorithm is much more robust to arbitrary measurement matrix A than the standard damped GAMP algorithm while being much lower complexity than the standard SBL algorithm. We then extend the approach from the single measurement vector (SMV) case to the temporally correlated multiple measurement vector (MMV) case, leading to the GGAMP-TSBL algorithm. We verify the robustness and computational advantages of the proposed algorithms through numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset