A General Framework For Frequentist Model Averaging

by   Priyam Mitra, et al.

Model selection strategies have been routinely employed to determine a model for data analysis in statistics, and further study and inference then often proceed as though the selected model were the true model that were known a priori. This practice does not account for the uncertainty introduced by the selection process and the fact that the selected model can possibly be a wrong one. Model averaging approaches try to remedy this issue by combining estimators for a set of candidate models. Specifically, instead of deciding which model is the 'right' one, a model averaging approach suggests to fit a set of candidate models and average over the estimators using certain data adaptive weights. In this paper we establish a general frequentist model averaging framework that does not set any restrictions on the set of candidate models. It greatly broadens the scope of the existing methodologies under the frequentist model averaging development. Assuming the data is from an unknown model, we derive the model averaging estimator and study its limiting distributions and related predictions while taking possible modeling biases into account. We propose a set of optimal weights to combine the individual estimators so that the expected mean squared error of the average estimator is minimized. Simulation studies are conducted to compare the performance of the estimator with that of the existing methods. The results show the benefits of the proposed approach over traditional model selection approaches as well as existing model averaging methods.


page 1

page 2

page 3

page 4


An outlier-robust model averaging approach by Mallows-type criterion

Model averaging is an alternative to model selection for dealing with mo...

When and when not to use optimal model averaging

Traditionally model averaging has been viewed as an alternative to model...

Optimal designs for model averaging in non-nested models

In this paper we construct optimal designs for frequentist model averagi...

Averaging causal estimators in high dimensions

There has been increasing interest in recent years in the development of...

Bayesian Model Averaging for Model Implied Instrumental Variable Two Stage Least Squares Estimators

Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) ...

Non-Bayesian Post-Model-Selection Estimation as Estimation Under Model Misspecification

In many parameter estimation problems, the exact model is unknown and is...

From Model Selection to Model Averaging: A Comparison for Nested Linear Models

Model selection (MS) and model averaging (MA) are two popular approaches...

Please sign up or login with your details

Forgot password? Click here to reset