A generalized parametric 3D shape representation for articulated pose estimation

03/05/2018
by   Meng Ding, et al.
0

We present a novel parametric 3D shape representation, Generalized sum of Gaussians (G-SoG), which is particularly suitable for pose estimation of articulated objects. Compared with the original sum-of-Gaussians (SoG), G-SoG can handle both isotropic and anisotropic Gaussians, leading to a more flexible and adaptable shape representation yet with much fewer anisotropic Gaussians involved. An articulated shape template can be developed by embedding G-SoG in a tree-structured skeleton model to represent an articulated object. We further derive a differentiable similarity function between G-SoG (the template) and SoG (observed data) that can be optimized analytically for efficient pose estimation. The experimental results on a standard human pose estimation dataset show the effectiveness and advantages of G-SoG over the original SoG as well as the promise compared with the recent algorithms that use more complicated shape models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset