A Graph-based Ranking Approach to Extract Key-frames for Static Video Summarization

11/29/2019
by   Saikat Chakraborty, et al.
0

Video abstraction has become one of the efficient approaches to grasp the content of a video without seeing it entirely. Key frame-based static video summarization falls under this category. In this paper, we propose a graph-based approach which summarizes the video with best user satisfaction. We treated each video frame as a node of the graph and assigned a rank to each node by our proposed VidRank algorithm. We developed three different models of VidRank algorithm and performed a comparative study on those models. A comprehensive evaluation of 50 videos from open video database using objective and semi-objective measures indicates the superiority of our static video summary generation method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro