A hybrid cross entropy algorithm for solving dynamic transit network design problem
This paper proposes a hybrid multiagent learning algorithm for solving the dynamic simulation-based bilevel network design problem. The objective is to determine the op-timal frequency of a multimodal transit network, which minimizes total users' travel cost and operation cost of transit lines. The problem is formulated as a bilevel programming problem with equilibrium constraints describing non-cooperative Nash equilibrium in a dynamic simulation-based transit assignment context. A hybrid algorithm combing the cross entropy multiagent learning algorithm and Hooke-Jeeves algorithm is proposed. Computational results are provided on the Sioux Falls network to illustrate the perform-ance of the proposed algorithm.
READ FULL TEXT