A Joint Precoding Framework for Wideband Reconfigurable Intelligent Surface-Aided Cell-Free Network

02/10/2020
by   Zijian Zhang, et al.
0

Thanks to the strong ability against the inter-cell interference, cell-free network has been considered as a promising technique to improve the network capacity of future wireless systems. However, for further capacity enhancement, it requires to deploy more base stations (BSs) with high cost and power consumption. To address the issue, inspired by the recently proposed technique called reconfigurable intelligent surface (RIS), we propose the concept of RIS-aided cell-free network to improve the network capacity with low cost and power consumption. The key idea is to replace some of the required BSs by low-cost and energy-efficient RISs, and deploy more RISs in the cell-free network for capacity enhancement. Then, for the proposed RIS-aided cell-free network in the typical wideband scenario, we formulate the joint precoding design problem at the BSs and RISs to maximize the network capacity. Due to the non-convexity and high complexity of the formulated problem, we develop an alternating optimization algorithm to solve this challenging problem. In particular, we decouple this problem via Lagrangian dual transform and fractional programming, and solve the subproblems alternatively. Note that most of the considered scenarios in existing works are special cases of the general scenario in this paper, and the proposed joint precoding framework can also serve as a general solution to maximize the capacity in most of existing RIS-aided scenarios. Finally, simulation results verify that, compared with the conventional cell-free network, the network capacity of the proposed scheme can be improved significantly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset