A multiphysics modeling approach for in-stent restenosis: Theoretical aspects and finite element implementation
Development of in silico models are intrinsic in understanding disease progression in soft biological tissues. Within this work, we propose a fully-coupled Lagrangian finite element framework which replicates the process of in-stent restenosis observed post stent implantation in a coronary artery. Coupled advection-reaction-diffusion reactions are set up that track the evolution of the concentrations of the platelet-derived growth factor, the transforming growth factor-β, the extracellular matrix, and the density of the smooth muscle cells. A continuum mechanical description of growth incorporating the evolution of arterial wall constituents is developed, and a suitable finite element implementation discussed. Qualitative validation of the computational model are presented by emulating a stented artery. Patient-specific data can be integrated into the model to predict the risk of restenosis and thereby assist in tuning of stent implantation parameters to mitigate the risk.
READ FULL TEXT