A multiphysics modeling approach for in-stent restenosis: Theoretical aspects and finite element implementation

04/05/2022
by   Kiran Manjunatha, et al.
0

Development of in silico models are intrinsic in understanding disease progression in soft biological tissues. Within this work, we propose a fully-coupled Lagrangian finite element framework which replicates the process of in-stent restenosis observed post stent implantation in a coronary artery. Coupled advection-reaction-diffusion reactions are set up that track the evolution of the concentrations of the platelet-derived growth factor, the transforming growth factor-β, the extracellular matrix, and the density of the smooth muscle cells. A continuum mechanical description of growth incorporating the evolution of arterial wall constituents is developed, and a suitable finite element implementation discussed. Qualitative validation of the computational model are presented by emulating a stented artery. Patient-specific data can be integrated into the model to predict the risk of restenosis and thereby assist in tuning of stent implantation parameters to mitigate the risk.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset