A New Framework for Inference on Markov Population Models

01/02/2021
by   Adam Walder, et al.
0

In this work we construct a joint Gaussian likelihood for approximate inference on Markov population models. We demonstrate that Markov population models can be approximated by a system of linear stochastic differential equations with time-varying coefficients. We show that the system of stochastic differential equations converges to a set of ordinary differential equations. We derive our proposed joint Gaussian deterministic limiting approximation (JGDLA) model from the limiting system of ordinary differential equations. The results is a method for inference on Markov population models that relies solely on the solution to a system deterministic equations. We show that our method requires no stochastic infill and exhibits improved predictive power in comparison to the Euler-Maruyama scheme on simulated susceptible-infected-recovered data sets. We use the JGDLA to fit a stochastic susceptible-exposed-infected-recovered system to the Princess Diamond COVID-19 cruise ship data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro