A new implementation of the geometric method for solving the Eady slice equations

03/09/2022
by   Charlie P. Egan, et al.
0

We present a new implementation of the geometric method of Cullen Purser (1984) for solving the semi-geostrophic Eady slice equations which model large scale atmospheric flows and frontogenesis. The geometric method is a Lagrangian discretisation, where the PDE is approximated by a particle system. An important property of the discretisation is that it is energy conserving. We restate the geometric method in the language of semi-discrete optimal transport theory and exploit this to develop a fast implementation that combines the latest results from numerical optimal transport theory with a novel adaptive time-stepping scheme. Our results enable a controlled comparison between the Eady-Boussinesq vertical slice equations and their semi-geostrophic approximation. We provide further evidence that weak solutions of the Eady-Boussinesq vertical slice equations converge to weak solutions of the semi-geostrophic Eady slice equations as the Rossby number tends to zero.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset