A new invariant for cyclic orbit flag codes
In the network coding framework, given a prime power q and the vector space 𝔽_q^n, a constant type flag code is a set of nested sequences of 𝔽_q-subspaces (flags) with the same increasing sequence of dimensions (the type of the flag). If a flag code arises as the orbit under the action of a cyclic subgroup of the general linear group over a flag, we say that it is a cyclic orbit flag code. Among the parameters of such a family of codes, we have its best friend, that is the largest field over which all the subspaces in the generating flag are vector spaces. This object permits to compute the cardinality of the code and estimate its minimum distance. However, as it occurs with other absolute parameters of a flag code, the information given by the best friend is not complete in many cases due to the fact that it can be obtained in different ways. In this work, we present a new invariant, the best friend vector, that captures the specific way the best friend can be unfolded. Furthermore, throughout the paper we analyze the strong underlying interaction between this invariant and other parameters such as the cardinality, the flag distance, or the type vector, and how it conditions them. Finally, we investigate the realizability of a prescribed best friend vector in a vector space.
READ FULL TEXT