A non-intrusive reduced-order modelling for uncertainty propagation of time-dependent problems using a B-splines Bézier elements-based method and Proper Orthogonal Decompositi

05/15/2021
by   Azzedine Abdedou, et al.
0

A proper orthogonal decomposition-based B-splines Bézier elements method (POD-BSBEM) is proposed as a non-intrusive reduced-order model for uncertainty propagation analysis for stochastic time-dependent problems. The method uses a two-step proper orthogonal decomposition (POD) technique to extract the reduced basis from a collection of high-fidelity solutions called snapshots. A third POD level is then applied on the data of the projection coefficients associated with the reduced basis to separate the time-dependent modes from the stochastic parametrized coefficients. These are approximated in the stochastic parameter space using B-splines basis functions defined in the corresponding Bézier element. The accuracy and the efficiency of the proposed method are assessed using benchmark steady-state and time-dependent problems and compared to the reduced order model-based artificial neural network (POD-ANN) and to the full-order model-based polynomial chaos expansion (Full-PCE). The POD-BSBEM is then applied to analyze the uncertainty propagation through a flood wave flow stemming from a hypothetical dam-break in a river with a complex bathymetry. The results confirm the ability of the POD-BSBEM to accurately predict the statistical moments of the output quantities of interest with a substantial speed-up for both offline and online stages compared to other techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro