A Non-repetitive Logic for Verification of Dynamic Memory with Explicit Heap Conjunction and Disjunction

05/30/2019
by   René Haberland, et al.
0

In this paper, we review existing points-to Separation Logics for dynamic memory reasoning and we find that different usages of heap separation tend to be an obstacle. Hence, two total and strict spatial heap operations are proposed upon heap graphs, for conjunction and disjunction -- similar to logical conjuncts. Heap conjunction implies that there exists a free heap vertex to connect to or an explicit destination vertex is provided. Essentially, Burstall's properties do not change. By heap we refer to an arbitrary simple directed graph, which is finite and may contain composite vertices representing class objects. Arbitrary heap memory access is restricted, as well as type punning, late class binding and further restrictions. Properties of the new logic are investigated, and as a result group properties are shown. Both expecting and superficial heaps are specifiable. Equivalence transformations may make denotated heaps inconsistent, although those may be detected and patched by the two generic linear canonization steps presented. The properties help to motivate a later full introduction of a set of equivalences over heap for future work. Partial heaps are considered as a useful specification technique that help to reduce incompleteness issues with specifications. Finally, the logic proposed may be considered for extension for the Object Constraint Language.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset