A nonparametric super-efficient estimator of the average treatment effect

by   David Benkeser, et al.

Doubly robust estimators of causal effects are a popular means of estimating causal effects. Such estimators combine an estimate of the conditional mean of the outcome given treatment and confounders (the so-called outcome regression) with an estimate of the conditional probability of treatment given confounders (the propensity score) to generate an estimate of the effect of interest. In addition to enjoying the double-robustness property, these estimators have additional benefits. First, flexible regression tools, such as those developed in the field of machine learning, can be utilized to estimate the relevant regressions, while the estimators of the treatment effects retain desirable statistical properties. Furthermore, these estimators are often statistically efficient, achieving the lower bound on the variance of regular, asymptotically linear estimators. However, in spite of their asymptotic optimality, in problems where causal estimands are weakly identifiable, these estimators may behave erratically. We propose two new estimation techniques for use in these challenging settings. Our estimators build on two existing frameworks for efficient estimation: targeted minimum loss estimation and one-step estimation. However, rather than using an estimate of the propensity score in their construction, we instead opt for an alternative regression quantity when building our estimators: the conditional probability of treatment given the conditional mean outcome. We discuss the theoretical implications and demonstrate the estimators' performance in simulated and real data.


Flexible Collaborative Estimation of the Average Causal Effect of a Treatment using the Outcome-Highly-Adaptive Lasso

Many estimators of the average causal effect of an intervention require ...

Three-way Cross-Fitting and Pseudo-Outcome Regression for Estimation of Conditional Effects and other Linear Functionals

We propose an approach to better inform treatment decisions at an indivi...

Localized Debiased Machine Learning: Efficient Estimation of Quantile Treatment Effects, Conditional Value at Risk, and Beyond

We consider the efficient estimation of a low-dimensional parameter in t...

Universal sieve-based strategies for efficient estimation using machine learning tools

Suppose that we wish to estimate a finite-dimensional summary of one or ...

Minimax optimal subgroup identification

Quantifying treatment effect heterogeneity is a crucial task in many are...

Nonparametric Estimation of Conditional Incremental Effects

Conditional effect estimation has great scientific and policy importance...

Average Adjusted Association: Efficient Estimation with High Dimensional Confounders

The log odds ratio is a common parameter to measure association between ...

Please sign up or login with your details

Forgot password? Click here to reset