A note relating ridge regression and OLS p-values to preconditioned sparse penalized regression

11/26/2014
by   Karl Rohe, et al.
0

When the design matrix has orthonormal columns, "soft thresholding" the ordinary least squares (OLS) solution produces the Lasso solution [Tibshirani, 1996]. If one uses the Puffer preconditioned Lasso [Jia and Rohe, 2012], then this result generalizes from orthonormal designs to full rank designs (Theorem 1). Theorem 2 refines the Puffer preconditioner to make the Lasso select the same model as removing the elements of the OLS solution with the largest p-values. Using a generalized Puffer preconditioner, Theorem 3 relates ridge regression to the preconditioned Lasso; this result is for the high dimensional setting, p > n. Where the standard Lasso is akin to forward selection [Efron et al., 2004], Theorems 1, 2, and 3 suggest that the preconditioned Lasso is more akin to backward elimination. These results hold for sparse penalties beyond l1; for a broad class of sparse and non-convex techniques (e.g. SCAD and MC+), the results hold for all local minima.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro