A novel approach to fluid-structure interaction simulations involving large translation and contact

01/13/2021
by   Daniel Hilger, et al.
0

In this work, we present a novel method for the mesh update in flow problems with moving boundaries, the phantom domain deformation mesh update method (PD-DMUM). The PD-DMUM is designed to avoid remeshing; even in the event of large, unidirectional displacements of boundaries. The method combines the concept of two mesh adaptation approaches: (1) The virtual ring shear-slip mesh updatemethod (VR-SSMUM); and (2) the elastic mesh update method (EMUM). As in the VR-SSMUM, the PD-DMUMextends the fluid domain by a phantom domain; the PD-DMUM can thus locally adapt the element density. Combined with the EMUM, the PD-DMUMallows the consideration of arbitrary boundary movements. In this work, we apply the PD-DMUM in two test cases. Within the first test case, we validate the PD-DMUM in a 2D Poiseuille flow on a moving background mesh. Subsequently the fluid-structure interaction (FSI) problem in the second test case serves as a proof of concept. More, we stress the advantages of the novel method with regard to conventional mesh update approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset