A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network
We introduce a novel embedding method for knowledge base completion task. Our approach advances state-of-the-art (SOTA) by employing a convolutional neural network (CNN) for the task which can capture global relationships and transitional characteristics. We represent each triple (head entity, relation, tail entity) as a 3-column matrix which is the input for the convolution layer. Different filters having a same shape of 1x3 are operated over the input matrix to produce different feature maps which are then concatenated into a single feature vector. This vector is used to return a score for the triple via a dot product. The returned score is used to predict whether the triple is valid or not. Experiments show that ConvKB achieves better link prediction results than previous SOTA models on two current benchmark datasets WN18RR and FB15k-237.
READ FULL TEXT