A numerical method for computing the Jordan Canonical Form

03/02/2021
by   Zhonggang Zeng, et al.
0

The Jordan Canonical Form of a matrix is highly sensitive to perturbations, and its numerical computation remains a formidable challenge. This paper presents a regularization theory that establishes a well-posed least squares problem of finding the nearest staircase decomposition in the matrix bundle of the highest codimension. A two-staged algorithm is developed for computing the numerical Jordan Canonical Form. At the first stage, the method calculates the Jordan structure of the matrix and an initial approximation to the multiple eigenvalues. The staircase decomposition is then constructed by an iterative algorithm at the second stage. As a result, the numerical Jordan Canonical decomposition along with multiple eigenvalues can be computed with high accuracy even if the underlying matrix is perturbed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset