A Pulse-and-Glide-driven Adaptive Cruise Control System for Electric Vehicle

05/18/2022
by   Zhaofeng Tian, et al.
4

As the adaptive cruise control system (ACCS) on vehicles is well-developed today, vehicle manufacturers have increasingly employed this technology in new-generation intelligent vehicles. Pulse-and-glide (PnG) strategy is an efficacious driving strategy to diminish fuel consumption in traditional oil-fueled vehicles. However, current studies rarely focus on the verification of the energy-saving effect of PnG on an electric vehicle (EV) and embedding PnG in ACCS. This paper proposes a pulse-and-glide-driven adaptive cruise control system (PGACCS) model which leverages PnG strategy as a parallel function with cruise control (CC) and verifies that PnG is an efficacious energy-saving strategy on EV by optimizing the energy cost of the PnG operation using Intelligent Genetic Algorithm and Particle Swarm Optimization (IGPSO). This paper builds up a simulation model of an EV with regenerative braking and ACCS based on which the performance of PGACCS and regenerative braking is evaluated; the PnG energy performance is optimized and the effect of regenerative braking on PnG energy performance is evaluated. As a result of PnG optimization, the PnG operation in the PGACCS could cut down 28.3 of the EV compared to the CC operation in the traditional ACCS which verifies that PnG is an effective energy-saving strategy for EV and PGACCS is a promising option for EV.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset