A Quadratic Lower Bound for Algebraic Branching Programs

11/26/2019
by   Prerona Chatterjee, et al.
0

We show that any Algebraic Branching Program (ABP) computing the polynomial ∑_i = 1^n x_i^n has at least Ω(n^2) vertices. This improves upon the lower bound of Ω(nlog n), which follows from the classical result of Baur and Strassen [Str73, BS83], and extends the results in [K19], which showed a quadratic lower bound for homogeneous ABPs computing the same polynomial. Our proof relies on a notion of depth reduction which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial ∑_i=1^n x_i^n can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial ∑_i = 1^n x_i^n + ϵ(x_1, ..., x_n), for a structured "error polynomial" ϵ(x_1, ..., x_n). To complete the proof, we then observe that the lower bound in [K19] is robust enough and continues to hold for all polynomials ∑_i = 1^n x_i^n + ϵ(x_1, ..., x_n), where ϵ(x_1, ..., x_n) has the appropriate structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro