A rational conjugate gradient method for linear ill-conditioned problems

06/06/2023
by   Stefan Kindermann, et al.
0

We consider linear ill-conditioned operator equations in a Hilbert space setting. Motivated by the aggregation method, we consider approximate solutions constructed from linear combinations of Tikhonov regularization, which amounts to finding solutions in a rational Krylov space. By mixing these with usual Krylov spaces, we consider least-squares problem in these mixed rational spaces. Applying the Arnoldi method leads to a sparse, pentadiagonal representation of the forward operator, and we introduce the Lanczos method for solving the least-squares problem by factorizing this matrix. Finally, we present an equivalent conjugate-gradient-type method that does not rely on explicit orthogonalization but uses short-term recursions and Tikhonov regularization in each second step. We illustrate the convergence and regularization properties by some numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset