A Recommender System for Equitable Public Art Curation and Installation

07/28/2022
by   Anna Haensch, et al.
0

The placement of art in public spaces can have a significant impact on who feels a sense of belonging. In cities, public art communicates whose interests and culture are being favored. In this paper, we propose a graph matching approach with local constraints to build a curatorial tool for selecting public art in a way that supports inclusive spaces. We develop a cost matrix by drawing on Schelling's model of segregation. Using the cost matrix as an input, the optimization problem is solved via projected gradient descent to obtain a soft assignment matrix. We discuss regularization terms to set curatorial constraints. Our optimization program allocates artwork to public spaces and walls in a way that de-prioritizes "in-group" preferences, by satisfying minimum representation and exposure criteria. We draw on existing literature to develop a fairness metric for our algorithmic output. Using Tufts University as a testbed, we assess the effectiveness of our approach and discuss its potential pitfalls from both a curatorial and equity standpoint.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro