A sequential resource investment planning framework using reinforcement learning and simulation-based optimization: A case study on microgrid storage expansion

01/10/2020
by   S. Tsianikas, et al.
1

A model and expansion plan have been developed to optimally determine microgrid designs as they evolve to dynamically react to changing conditions and to exploit energy storage capabilities. In the wake of the highly electrified future ahead of us, the role of energy storage is crucial wherever distributed generation is abundant, such as microgrid settings. Given the variety of storage options that are recently becoming more economical, determining which type of storage technology to invest in, along with the appropriate timing and capacity becomes a critical research question. In problems where the investment timing is of high priority, like this one, developing analytical and systematic frameworks for rigorously considering these issues is indispensable. From a business perspective, these strategic frameworks will aim to optimize the process of investment planning, by leveraging novel approaches and by capturing all the problem details that traditional approaches are unable to. Reinforcement learning algorithms have recently proven to be successful in problems where sequential decision-making is inherent. In the operations planning area, these algorithms are already used but mostly in short-term problems with well-defined constraints and low levels of uncertainty modeling. On the contrary, in this work, we expand and tailor these techniques to long-term investment planning by utilizing model-free approaches, like the Q-learning algorithm, combined with simulation-based models. We find that specific types of energy storage units, including the vanadium-redox battery, can be expected to be at the core of the future microgrid applications, and therefore, require further attention. Another key finding is that the optimal storage capacity threshold for a system depends heavily on the price movements of the available storage units in the market.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset