A stochastic approximation method for chance-constrained nonlinear programs
We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraints violation. In order to be able to apply a projected stochastic subgradient algorithm to solve our reformulation with the probabilistic objective, we adapt existing smoothing-based approaches for chance-constrained problems to derive a convergent sequence of smooth approximations of our reformulated problem. In contrast with exterior sampling-based approaches (such as sample average approximation) that approximate the original chance-constrained program with one having finite support, our proposal converges to local solutions of a smooth approximation of the original problem, thereby avoiding poor local solutions that may be an artefact of a fixed sample. Computational results on three test problems from the literature indicate that our proposal is consistently able to determine better approximations of the efficient frontier than existing approaches in reasonable computation times. We also present a bisection approach for solving chance-constrained programs with a prespecified risk level.
READ FULL TEXT