A Survey of Causal Inference Frameworks

09/02/2022
by   Jingying Zeng, et al.
0

Causal inference is a science with multi-disciplinary evolution and applications. On the one hand, it measures effects of treatments in observational data based on experimental designs and rigorous statistical inference to draw causal statements. One of the most influential framework in quantifying causal effects is the potential outcomes framework. On the other hand, causal graphical models utilizes directed edges to represent causalities and encodes conditional independence relationships among variables in the graphs. A series of research has been done both in reading-off conditional independencies from graphs and in re-constructing causal structures. In recent years, the most state-of-art research in causal inference starts unifying the different causal inference frameworks together. This survey aims to provide a review of the past work on causal inference, focusing mainly on potential outcomes framework and causal graphical models. We hope that this survey will help accelerate the understanding of causal inference in different domains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset