A Theory of Mind Approach as Test-Time Mitigation Against Emergent Adversarial Communication

02/14/2023
by   Nancirose Piazza, et al.
0

Multi-Agent Systems (MAS) is the study of multi-agent interactions in a shared environment. Communication for cooperation is a fundamental construct for sharing information in partially observable environments. Cooperative Multi-Agent Reinforcement Learning (CoMARL) is a learning framework where we learn agent policies either with cooperative mechanisms or policies that exhibit cooperative behavior. Explicitly, there are works on learning to communicate messages from CoMARL agents; however, non-cooperative agents, when capable of access a cooperative team's communication channel, have been shown to learn adversarial communication messages, sabotaging the cooperative team's performance particularly when objectives depend on finite resources. To address this issue, we propose a technique which leverages local formulations of Theory-of-Mind (ToM) to distinguish exhibited cooperative behavior from non-cooperative behavior before accepting messages from any agent. We demonstrate the efficacy and feasibility of the proposed technique in empirical evaluations in a centralized training, decentralized execution (CTDE) CoMARL benchmark. Furthermore, while we propose our explicit ToM defense for test-time, we emphasize that ToM is a construct for designing a cognitive defense rather than be the objective of the defense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro