A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single RGB Images

07/04/2016
by   Jun Li, et al.
0

Estimating depth from a single RGB image is an ill-posed and inherently ambiguous problem. State-of-the-art deep learning methods can now estimate accurate 2D depth maps, but when the maps are projected into 3D, they lack local detail and are often highly distorted. We propose a fast-to-train two-streamed CNN that predicts depth and depth gradients, which are then fused together into an accurate and detailed depth map. We also define a novel set loss over multiple images; by regularizing the estimation between a common set of images, the network is less prone to over-fitting and achieves better accuracy than competing methods. Experiments on the NYU Depth v2 dataset shows that our depth predictions are competitive with state-of-the-art and lead to faithful 3D projections.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro