Abstraction, Up-to Techniques and Games for Systems of Fixpoint Equations

03/19/2020
by   Paolo Baldan, et al.
0

Systems of fixpoint equations over complete lattices, consisting of (mixed) least and greatest fixpoint equations, allow one to express a number of verification tasks such as model-checking of various kinds of specification logics or the check of coinductive behavioural equivalences. In this paper we develop a theory of approximation for systems of fixpoint equations in the style of abstract interpretation: a system over some concrete domain is abstracted to a system in a suitable abstract domain, with conditions ensuring that the abstract solution represents a sound/complete overapproximation of the concrete solution. Interestingly, up-to techniques, a classical approach used in coinductive settings to obtain easier or feasible proofs, can be interpreted as abstractions in a way that they naturally fit in our framework and extend to systems of equations. Additionally, relying on the approximation theory, we can provide a characterisation of the solution of systems of fixpoint equations over complete lattices in terms of a suitable parity game, generalising some recent work that was restricted to continuous lattices. The game view opens the way to the development of on-the-fly algorithms for characterising the solution of such equation systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro