ACLM: A Selective-Denoising based Generative Data Augmentation Approach for Low-Resource Complex NER

by   Sreyan Ghosh, et al.

Complex Named Entity Recognition (NER) is the task of detecting linguistically complex named entities in low-context text. In this paper, we present ACLM Attention-map aware keyword selection for Conditional Language Model fine-tuning), a novel data augmentation approach based on conditional generation to address the data scarcity problem in low-resource complex NER. ACLM alleviates the context-entity mismatch issue, a problem existing NER data augmentation techniques suffer from and often generates incoherent augmentations by placing complex named entities in the wrong context. ACLM builds on BART and is optimized on a novel text reconstruction or denoising task - we use selective masking (aided by attention maps) to retain the named entities and certain keywords in the input sentence that provide contextually relevant additional knowledge or hints about the named entities. Compared with other data augmentation strategies, ACLM can generate more diverse and coherent augmentations preserving the true word sense of complex entities in the sentence. We demonstrate the effectiveness of ACLM both qualitatively and quantitatively on monolingual, cross-lingual, and multilingual complex NER across various low-resource settings. ACLM outperforms all our neural baselines by a significant margin (1 of ACLM to other domains that suffer from data scarcity (e.g., biomedical). In practice, ACLM generates more effective and factual augmentations for these domains than prior methods. Code:


page 16

page 18


BioAug: Conditional Generation based Data Augmentation for Low-Resource Biomedical NER

Biomedical Named Entity Recognition (BioNER) is the fundamental task of ...

Data Augmentation for Cross-Domain Named Entity Recognition

Current work in named entity recognition (NER) shows that data augmentat...

Data Augmentation for Robust Character Detection in Fantasy Novels

Named Entity Recognition (NER) is a low-level task often used as a found...

GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation

We introduce GENIUS: a conditional text generation model using sketches ...

MELM: Data Augmentation with Masked Entity Language Modeling for Cross-lingual NER

Data augmentation for cross-lingual NER requires fine-grained control ov...

Enhancing Few-shot NER with Prompt Ordering based Data Augmentation

Recently, data augmentation (DA) methods have been proven to be effectiv...

Please sign up or login with your details

Forgot password? Click here to reset