Action Planning for Packing Long Linear Elastic Objects into Compact Boxes with Bimanual Robotic Manipulation

by   Wanyu Ma, et al.

Automatic packing of objects is a critical component for efficient shipping in the Industry 4.0 era. Although robots have shown great success in pick-and-place operations with rigid products, the autonomous shaping and packing of elastic materials into compact boxes remains one of the most challenging problems in robotics; The automation of packing tasks is crucial at this moment given the accelerating shift towards e-commerce (which requires to manipulate multiple types of materials). In this paper, we propose a new action planning approach to automatically pack long linear elastic objects into common-size boxes with a bimanual robotic system. For that, we developed an efficient vision-based method to compute the objects' geometry and track its deformation in real-time and without special markers; The algorithm filters and orders the feedback point cloud that is captured by a depth sensor. A reference object model is introduced to plan the manipulation targets and to complete occluded parts of the object. Action primitives are used to construct high-level behaviors, which enable the execution of all packing steps. To validate the proposed theory, we conduct a detailed experimental study with multiple types and lengths of objects and packing boxes. The proposed methodology is original and its demonstrated manipulation capabilities have not (to the best of the authors knowledge) been previously reported in the literature.


page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8


Planning Irregular Object Packing via Hierarchical Reinforcement Learning

Object packing by autonomous robots is an im-portant challenge in wareho...

Towards Robust Product Packing with a Minimalistic End-Effector

Advances in sensor technologies, object detection algorithms, planning f...

Model Predictive Manipulation of Compliant Objects with Multi-Objective Optimizer and Adversarial Network for Occlusion Compensation

The robotic manipulation of compliant objects is currently one of the mo...

Robotic Learning the Sequence of Packing Irregular Objects from Human Demonstrations

We address the unsolved task of robotic bin packing with irregular objec...

Convolutional Occupancy Models for Dense Packing of Complex, Novel Objects

Dense packing in pick-and-place systems is an important feature in many ...

World-Model-Based Control for Industrial box-packing of Multiple Objects using NewtonianVAE

The process of industrial box-packing, which involves the accurate place...

Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking, and Packing

Robotic picking from cluttered bins is a demanding task, for which Amazo...

Please sign up or login with your details

Forgot password? Click here to reset